منابع مشابه
4 Multiple little q - Jacobi polynomials ⋆
We introduce two kinds of multiple little q-Jacobi polynomials p~n with multi-index ~n = (n1, n2, . . . , nr) and degree |~n| = n1 + n2 + · · · + nr by imposing orthogonality conditions with respect to r discrete little q-Jacobi measures on the exponential lattice {qk, k = 0, 1, 2, 3, . . .}, where 0 < q < 1. We show that these multiple little qJacobi polynomials have useful q-difference proper...
متن کاملStructure relations for the bivariate big q-Jacobi polynomials
The bivariate big q-Jacobi polynomials are defined by [3] Pn,k(x, y; a, b, c, d; q) := Pn−k(y; a, bcq , dq; q) y(dq/y; q)k Pk (x/y; c, b, d/y; q) (n ≥ 0; k = 0, 1, . . . , n), where q ∈ (0, 1), 0 < aq, bq, cq < 1, d < 0, and Pm(t;α, β, γ; q) are univariate big q-Jacobi polynomials, Pm(t;α, β, γ; q) := 3φ2 ( q−m, αβq, t αq, γq ∣∣∣∣ q; q) (m ≥ 0) (see, e.g., [1, Section 7.3]). We give structure r...
متن کاملTwo-variable orthogonal polynomials of big q-Jacobi type
A four-parameter family of orthogonal polynomials in two variables is defined by Pn,k(x, y; a, b, c, d; q) :=Pn−k(y; a, bcq , dq; q) y(dq/y; q)k Pk (x/y; c, b, d/y; q) (n ∈ N; k = 0, 1, . . . , n), where q ∈ (0, 1), 0 < aq, bq, cq < 1, d < 0, and Pm(t;α, β, γ; q) are univariate big q-Jacobi polynomials, Pm(t;α, β, γ; q) := 3φ2 ( q−m, αβq, t αq, γq ∣∣∣∣ q; q) (m ≥ 0) (see, e.g., [1, Section 7.3]...
متن کاملOn the Limit from q-Racah Polynomials to Big q-Jacobi Polynomials
A limit formula from q-Racah polynomials to big q-Jacobi polynomials is given which can be considered as a limit formula for orthogonal polynomials. This is extended to a multi-parameter limit with 3 parameters, also involving (q-)Hahn polynomials, little q-Jacobi polynomials and Jacobi polynomials. Also the limits from Askey–Wilson to Wilson polynomials and from q-Racah to Racah polynomials ar...
متن کاملTHE BIG q-JACOBI FUNCTION TRANSFORM
Abstract. We give a detailed description of the resolution of the identity of a second order q-difference operator considered as an unbounded self-adjoint operator on two different Hilbert spaces. The q-difference operator and the two choices of Hilbert spaces naturally arise from harmonic analysis on the quantum group SUq(1, 1) and SUq(2). The spectral analysis associated to SUq(1, 1) leads to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of Mathematical Sciences
سال: 2020
ISSN: 1664-3607,1664-3615
DOI: 10.1142/s1664360720500137